高数第四章
基本积分公式
1. \(\int \frac{1}{\sqrt{1-x^2}} dx\)
\begin{align*}
\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C
\end{align*}
2. \(\int x^2 dx\)
\begin{align*}
\int x^2 dx = \frac{x^3}{3} + C
\end{align*}
3. \(\int \frac{1}{x^2} dx\)
\[
\begin{align*}
&\int \frac{1}{x^2}dx=\int x^{-2}dx\\
=&\frac{x^{\mu+1}}{\mu +1}+C =\frac{x^{-2+1}}{-2+1}+C\\
=&\frac{x^{-1}}{-1}+C=\frac{1}{-1} x^{-1}+C=-x^{-1}+C=-\frac{1}{x}+C
\end{align*}
\]
4. \(\int \sin x dx\)
\[
\begin{align*}
\int \sin x dx = -\cos x + C
\end{align*}
\]
5. \(\int \cos x dx\)
\[
\begin{align*}
\int \cos x dx = \sin x + C
\end{align*}
\]
6. \(\int \frac{1}{1+x^2} dx\)
\[
\begin{align*}
\int \frac{1}{1+x^2} dx = \arctan x + C
\end{align*}
\]
7. \(\int 3^x dx\)
\[
\begin{align*}
\int 3^x dx = \frac{3^x}{\ln 3} + C
\end{align*}
\]
8. \(\int \frac{1}{x} dx\)
\[
\begin{align*}
\frac{1}{x}dx = \ln|x| + C
\end{align*}
\]
不定积分基本性质
根据不定积分与导数的关系:若 \(\int f(x)dx = F(x) + C\)(\(F(x)\) 是原函数,C 为常数),则 \(f(x) = F'(x)\)(常数的导数为 0) \begin{align*} f(x)=F'(x) \end{align*}
9. 已知 \(\int f(x) dx = \arcsin 2x + C\),求 \(f(x)\)
\[
\begin{align*}
\int f(x)dx&=\arcsin 2x + C\\
f(x)&=(\arcsin 2x)' \cdot (2x)'\\
f(x)&=\frac{1}{\sqrt{1-(2x)^2}} \cdot 2\\
f(x)&=\frac{2}{\sqrt{1-4x^2}}
\end{align*}
\]
10. 已知 \(\int f(x) dx = 2\sin 2x + C\),求 \(f(x)\)
\[
\begin{align*}
\int f(x)dx&=2\sin 2x + C\\
f(x)&=2(\sin 2x)'*(2x)'\\
f(x)&=2\cos 2x*2\\
f(x)&=4\cos 2x
\end{align*}
\]
11. 已知 \(\int f(x) dx = \arcsin 3x + C\),求 \(f(x)\)
\[
\begin{align*}
\int f(x)dx&=\arcsin 3x + C\\
f(x)&=(\arcsin 3x)'*(3x)'\\
f(x)&=\frac{1}{\sqrt{1-(3x)^2}}*3\\
f(x)&=\frac{3}{\sqrt{1-9x^2}}
\end{align*}
\]
12. 已知 \(\int f(x) dx = 3\sin 3x + C\),求 \(f(x)\)
\[
\begin{align*}
\int f(x)dx&=3\sin 3x + C\\
f(x)&=3(\sin 3x)'*(3x)'\\
f(x)&=3\cos 3x*3\\
f(x)&=9\cos 3x
\end{align*}
\]
不定积分的导数,导数的不定积分
积分的导数:对一个函数的不定积分求导,结果等于这个函数本身 \begin{align*} &[\int f(x)dx]'=f(x) \end{align*}
13. 设 \(f(x)=\cot x\),求 \((\int f(x)dx)'\)
\[
\begin{align*}
(\int f(x)dx)' = \cot x
\end{align*}
\]
14. 设 \(f(x)=\tan x\),求 \((\int f(x)dx)'\)
\[
\begin{align*}
(\int f(x)dx)' = \tan x
\end{align*}
\]
19. 求 \((\int \arctan x\,dx)'\)
\[
\begin{align*}
(\int \arctan x\,dx)' = \arctan x
\end{align*}
\]
20. 求 \((\int \arcsin x\,dx)'\)
\[
\begin{align*}
(\int \arcsin x\,dx)' = \arcsin x
\end{align*}
\]
15. 设 \(f(x)=\sin x\),求 \(\int f'(x)\,dx\)
\[
\begin{align*}
\int f'(x)\,dx = \sin x + C
\end{align*}
\]
16. 设 \(f(x)=\cos x\),求 \(\int f'(x)\,dx\)
\[
\begin{align*}
\int f'(x)\,dx = \cos x + C
\end{align*}
\]
原函数与导数的关系
原函数的定义:若 \(F(x)\) 是 \(f(x)\) 的原函数,则 \(f(x) = F'(x)\)(原函数的导数等于被积函数)
17. 设 \(x^2+\sin x\) 是 \(f(x)\) 的一个原函数,求 \(f(x)\)
\[
\begin{align*}
f(x)&=F'(x)\\
&=x^2+\sin x\\
&=(x^2+\sin x)'\\
&=2x+\cos x
\end{align*}
\]
18. 设 \(x^3+2\sin x\) 是 \(f(x)\) 的一个原函数,求 \(f(x)\)
\[
\begin{align*}
f(x)&=F'(x)\\
&=x^3+2\sin x\\
&=(x^3+2\sin x)'\\
&=3x^2+2\cos x
\end{align*}
\]
21. 已知 \(f(x)=\cos x\),求一个原函数
\[
\begin{align*}
f(x)&=cosx\\
f(x)&=(sinx)'\\
f(x)&=cosx\\
\therefore 原函&数sinx
\end{align*}
\]
22. 已知 \(f(x)=\sin x\),求一个原函数
\[
\begin{align*}
f(x)&=sinx\\
f(x)&=(-cosx)'\\
f(x)&=sinx\\
\therefore 原函&数-cosx
\end{align*}
\]
不定积分的线性运算
23. \(\int (2-\cos x)\,dx\)
\[
\begin{align*}
&\int (2-\cos x)dx\\
=&\int 2dx-\int \cos x dx\\
=&2x-\sin x + C
\end{align*}
\]
24. \(\int (4-3\cos x)\,dx\)
\[
\begin{align*}
&\int (4-3\cos x)dx\\
=&\int 4dx-\int 3\cos x dx\\
=&4x-3\sin x + C
\end{align*}
\]
25. \(\int (x^3+e^x)\,dx\)
\[
\begin{align*}
&\int (x^3+e^x)dx\\
=&\int x^3dx+\int e^xdx\\
=&\frac{x^{3+1}}{3+1} +e^x+C\\
=&\frac{x^4}{4} +e^x+C
\end{align*}
\]
26. \(\int (x^5+2e^x)\,dx\)
\[
\begin{align*}
&\int (x^5+2e^x)dx\\
=&\int x^5dx+\int 2e^x dx\\
=&\frac{x^{5+1}}{5+1} +2e^x+C\\
=&\frac{x^6}{6} +2e^x+C
\end{align*}
\]
第一类换元积分法(凑微分法)
29. \(\int cosxsin^2xdx\)
29. \(\int sinxcosx^2xdx\)
29. \(\int \frac{3x^3}{1-x^4}dx\)
29. \(\int \frac{2x^3}{1-x^4}dx \)
分部积分法
\begin{align*} \int uv'dx=uv-\int u'vdx \end{align*}
27. \(\int x \sin x \, dx\)
\[
\begin{align*}
&\int x \sin x dx\\
=&\int x(-\cos x)' dx\\
=&-x\cos x+\int (x)' \cos x dx\\
=&-x\cos x+\sin x + C
\end{align*}
\]
27. \(\int x \cos x \, dx\)
\[
\begin{align*}
&\int xcosxdx\\
=&\int x(sinx)'dx\\
=&xsinx-\int sinxdx\\
=&xsinx+cosx+C
\end{align*}
\]
28. \(\int x e^{-x} \, dx\)
\[
\begin{align*}
&\int xe^{-x}dx\\
=&\int x(-e^{-x})dx\\
=&-xe^{-x}-\int -e^{-x}dx\\
=&-xe^{-x}+\int e^{-x}dx\\
=&-xe^{-x}-e^{-x}+C
\end{align*}
\]
29. \(\int x e^{x} \, dx\)
\[
\begin{align*}
&\int xe^{x}dx\\
=&\int x(e^{x})'dx\\
=&xe^{x}-\int e^{x}dx\\
=&xe^{x}-e^{x}+C
\end{align*}
\]
本文是原创文章,采用 CC BY-NC-ND 4.0 协议,完整转载请注明来自 Jieoo
评论
匿名评论
隐私政策
你无需删除空行,直接评论以获取最佳展示效果